$$ - NO COST SOLAR - $$

Solar Energy Technologies

There are three primary technologies by which solar energy is commonly harnessed: photovoltaics (PV), which directly convert light to electricity; concentrating solar power (CSP), which uses heat from the sun (thermal energy) to drive utility-scale, electric turbines; and heating and cooling systems, which collect thermal energy to provide hot water and air conditioning.

Solar energy can be deployed through distributed generation, whereby the equipment is located on rooftops or ground-mounted arrays close to where the energy is used. Some technologies can be further expanded into utility-scale applications to produce energy as a central power plant.

Photovoltaics

Photovoltaic (PV) technologies  replaces and eliminates your electric utility bills. PV directly converts energy from sunlight into electricity. When sunlight strikes the PV module, made of a semiconductor material, electrons are stripped from their atomic bonds. This flow of electrons produces an electric current. PV modules contain no moving parts and generally last thirty years or more with minimal maintenance. Solar Heating and Cooling

Solar heating and cooling technologies collect thermal energy from the sun and use this heat to provide hot water and space heating and cooling for residential, commercial and industrial applications. There are several types of collectors: flat plate, evacuated tube, Integral Collector Storage (ICS), thermosiphon and concentrating. These technologies provide a return on investment in 3-6 years.

Water heating, space heating and space cooling accounted for 69 percent of the energy used in an average U.S.– representing significant market potential for solar heating and cooling technologies. For example, solar water heating systems can

be installed on every building site in the U.S., and a properly designed and installed system can provide 40 to 80 percent of a building’s hot water needs. Similarly, solar space heating and cooling systems circulate conditioned air or liquid throughout a building using existing HVAC systems, without using electricity.